The GREAT AMERICAN WATER TASTE TEST

ALABAMA STATE CHAMPION

Water Quality Report

For Period Ending December 2024 PWS ID Number AL 0000133

Anniston Water Works and Sewer Board of Directors and Management Edward A. Turner, General Manager/CEO Brett Rothwell, Chairman

Aaron Acker, Vice Chairman Brooklyn Freeman, Director Emily Robison, Director Ann Welch, Secretary-Treasurer Dionne Johnson, Director Shane Denham, Director

			TABLE OF	DETECTED DRI	NKING WATEI 024 - DEC. 202		ANTS	
				Coldwater Spring	Hillabee Reservoir	-		
Primary Inorganic Substance	Units	MCL	MCLG	Highest Level Last 12 Month		Violation	Source of Contamination	
Barium	ppb	2000	2000	24	9	No	Discharge of drilling wastes; discharge from met- als refineries; erosion of natural deposits	
Nickel	ppb	100	100	<5	<5	No	Discharge from steel and pulp mills: erosion of natural desposits	
Fluoride	ppm	4	4	0.63	0.49	No	Water additive which promotes strong teeth; Erosion of natural deposits; Discharge from ferti lizer and aluminum factories	
Nitrate (as N)	ppm	10	10	0.41	<0.1	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Nitrite (as N)	ppm	1	1	<0.05	<0.05	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Sulfate	ppm	500		<5	22	No	Erosion of natural deposits	
Secondary Inorganic Substance	Units	MCL	MCLG	Highest Level Last 12 Month		Violation	Source of Contamination	
Alkalinity, Total	ppm			102	<20	No	Erosion of natural deposits	
Aluminum	ppb	200		<10.0	<10.0	No	Water additive for removing organics; Erosion of natural deposits	
Calcium	ppm			23.7	13.3	No	Erosion of natural deposits	
Carbon Diox- ide	ppm			18.5	1.0	No		
Chloride	ppm	250		2.86	4.30	No		
Conductance	umhos/cm			107	96.5	No	Erosion of natural deposits	
Copper	ppb	1300	1300	14.7	<1.0	No	Corrosion of household plumbing systems; Ero- sion of natural deposits; Leaching from wood preservatives	
Hardness, Total (As CaCO3)	ppm			105	33.3	No	Erosion of natural deposits	
Iron	pph	300		<50	<50	No	Erosion of natural deposits	
Magnesium	ppm			11.1	<1.0	No	Erosion of natural deposits	
MBAS (Foaming Agents)	ppm			<0.05	<0.05	No		
Zinc	ppb	5000		<20	<20	No		
рН	s.u.			7.94	7.0	No		
Sodium	ppm			1.42	1.51	No	Erosion of natural deposits	
Total Dis- solved Solids	ppm	500		118	81.0	No	Erosion of natural deposits	
Disinfection By-Products (at the WTPs)	Units	MCL	MCLG	Highest Level Last 12 Month		Violation	Source of Contamination	
Total Trihalo- methanes (TTHM's)	ppb	80	0	<2.0	35.5	No	By-product of drinking water chlorination	
Haloacetic Acids (HAA5)	ppb	60	0	<1.0	19.0	No	By-product of drinking water chlorination	

U+A34:H64nregulated Vola-	Units	MCL	MCLG	Highest Level		Violation	Source of Contamination
tile Chemicals	nnh			Month	1	No	
Bromodichloromethane Chloroform	ppb ppb	N/A N/A	0 70	<1.0 <1.0	4.32 31.2	No No	By-product of drinking water chlorination By-product of drinking water chlorination
				Highest Level			
Radionuclides	Units	MCL	MCLG	Month		Violation	Source of Contamination
					Not		
Gross Alpha	pCi/L	15	0	Not required in 2024	required in 2024	No	Erosion of natural deposits
	pei/ 2	15	0	2021	Not		
				Not required in	-		
Radium-228	pCi/L	15	0	2024	in 2024	No	Erosion of natural deposits
Turbidty	Units	MCL	MCLG	Highest Level Month		Violation	Source of Contamination
Turbidty	NTU	0.3		0.09	0.08	No	Soil Runoff
Regulated Volatile Chemicals	Units	MCL	MCLG	Highest Level Month		Violation	Source of Contamination
				Month	Not		
					required		Discharge from metal degreasing sites and other
TCE(Trichloroethylene)	ppb	5	0	<0.5	in 2024	No	factories
					Not required		
cis-1,2-Dichloroethylene	ppb	70	70	<0.5	in 2024	No	Discharge from industrial chemical factories
LT2	Units	MCL	MCLG	Highest Level	Last 12	Violation	Source of Contamination
L12		INCL	MICEG	Month		VIOLATION	
Cryptosporidium, Calc.	organ- isms/L	TT**	0	0	0	No	Human and animal fecal waste
Non-Regulated Contaminants	Units	MCL	MCLG	Highest Level	Last 12	Violation	Source of Contamination
Non-Regulated Contaminants	Onits	INCL	MICEO	Month	1	VIOLATION	Source of containingtion
		Not Reg-			Not required		
Methyl tertiary-butly ether	ppb	ulated		<0.5	in 2024	No	Petroleum Products
		Not Reg-					
Total Organic Carbon	ppm	ulated		<5.0 Highest Level	2.09	No	Natural Sources
Synthetic Organical Chemicals	Units	MCL	MCLG	Hignest Level Month		Violation	Source of Contamination
					Not		
Polychlorinated Biphenyls (PCBs) *	PPM	0.0005		Not required in 2024	required in 2024	No	Runoff from herbicide used on rights of way
(1 CD3)		0.0005	TABLE	OF MICROBIOLO			Renormensiene used of rights of way
				JAN. 2024 -	DEC. 2024		
Total Coliforms	Units	MCL	MCLG	Highest Level		Violation	Source of Contamination
Not more than 5 percent of				Month			
the 70 monthly bacteriological							
samples taken during the		Less than					
month can test positive for total coliform. No sample can	<5%	5%	0	0.014%	1	No	Human and animal fecal waste
test positive for fecal coliform							
or E. Coli.							
Lead and Copper Monitoring	Units	MCL	MCLG	Highest Level Month		Violation	Source of Contamination
							Corrosion of household plumbing systems; Ero-
Lead	ppb	15	0	Not required i	n 2024	No	sion of natural deposits
							Corrosion of household plumbing systems; Ero-
Copper	ppb	1300	1300	Not required i	n 2024	No	sion of natural deposits
· · ·							

List of N	Non-Detect Substances (An	niston Water Works tested	for the following substanc	es in 2024 but none were	detected.)
E. Coli	Carbofuran	PCBs	Chloromethane	1,1-Dichloroethylene	Chromium
Total Coliform Bacteria	Chlordane	Pentachlorophenol	Dibromomethane	1,2,4-Trichlorobenzene	Cyanide
3-Hydroxycarbofuran	Dalapon	Picloram	Dibromochloromethane	1,2-Dichloroethane	Lead
Aldicarb	Di-(2-ethylhexyl)adipate	Simazine	Dichlorodifluoromethane	1,2-Dichloropropane	Mercury
Aldicarb Sulfone	Di (2-ethylhexyl) phthalates	Toxaphene	Hexachlorobutadiene	Benzene	Nickel
Aldicarb Sulfoxide	Dibromochloropropane	1-Naphthol	Isopropylbenzene	Carbon Tetrachloride	Nitrite
Aldrin	Dinoseb	1,1 - Dichloropropene	M-Dichlorobenzene	Chlorobenzene	Selenium
Butachlor	Dioxin[2,3,7,8-TCDD]	1,1,2,2-Tetrachloroethane	МТВЕ	cis-1,2-Dichloroethylene	Thallium
Carbaryl	Diquat	1,1-Dichloroethane	N - Butylbenzene	Dichloromethane	Aluminum
Dicamba	Endothall	1,2,3 - Trichlorobenzene	Naphthalene	Ethylbenzene	Color
Dieldrin	Endrin	1,2,3 - Trichloropropane	N-Propylbenzene	p-Dichlorobenzene	Iron
Methomyl	Epichlorohydrin	1,2,4 - Trimethylbenzene	O-Chlorotoluene	Styrene	Manganese
Metolachlor	Ethylene dibromide	1,3 - Dichloropropane	P-Chlorotoluene	Tetrachloroethylene	Silver
Metribuzin	Glyphosate	1,3 - Dichloropropene	P-Isopropyltoluene	Toluene	Zinc
Propachlor	Heptachlor	1,3,5 - Trimethylbenzene		trans-1,2- Dichloroethylene	Arsenic
2,4,5-TP (Silvex)	Heptachlor epoxide	2,2 - Dichloropropane	Tert - Butylbenzene	Trichloroethylene	Lead
2,4-D	Hexachlorobenzene	Bromobenzene	Trichlorfluoromethane	Vinyl Chloride	Monobromoacetic Acid
Acrylamide	Hexachlorocyclopentadi- ene	Bromochloromethane	1,1,1,2-Tetrachloroethane	Xylenes	Cryptosporidium
Alachlor	Lindane	Bromoform	O-Dichlorobenzene	Antimony	Giardia Lambia
Atrazine	Methoxychlor	Bromomethane	1,1,1-Trichloroethane	Beryllium	Lithium
Benzo(a)pyrene[PAHs]	Oxamyl [Vydate]	Chloroethane	1,1,2-Trichloroethane	Cadmium	

List of Non-Detect Substances (Anniston Water Works tested for the following substances in 2024 but none were detected.)				
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	perfluorohexanoic acid (PFHxA)			
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	perfluoro-3-methoxypropanoic acid (PFMPA)			
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	perfluoro-4-methoxybutanoic acid (PFMBA)			
hexafluoropropylene oxide dimer acid (HFPO-DA) (GenX chemicals)	perfluorononanoic acid (PFNA)			
nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	1H,1H, 2H, 2H-perfluorooctane sulfonic acid (6:2FTS)			
perfluorobutanoic acid (PFBA)	perfluorooctanesulfonic acid (PFOS)			
perfluorobutanesulfonic acid (PFBS)	perfluorooctanoic acid (PFOA)			
1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS)	perfluoropentanoic acid (PFPeA)			
perfluorodecanoic acid (PFDA)	perfluoropentanesulfonic acid (PFPeS)			
perfluorododecanoic acid (PFDoA)	perfluoroundecanoic acid (PFUnA)			
perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			
perfluoroheptanesulfonic acid (PFHpS)	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
perfluoroheptanoic acid (PFHpA)	perfluorotetradecanoic acid (PFTA)			
1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS)	perfluorotridecanoic acid (PFTrDA)			
perfluorohexanesulfonic acid (PFHxS)				

	Definitions and Abbreviations				
AL	Action Level	The concentration of a contaminant which triggers treatment or other requirements which a water system must follow.			
MCL	Maximum Contaminant Level	The highest level of a contaminant that is allowed in drinking water.			
MCLG	Maximum Contaminant Level	The level of a contaminant in drinking water below which there is no known or expected health risk.			
MRDL	Maximum Residual Disinfectant Level	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.			
MRDLG	Maximum Residual Disinfectant Level Goal	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.			
NS	None Set	No MCL has been set.			
NTU		A measure of turbidity. Turbidity has no health effects. However, turbidity can interfere with disinfection and pro- vide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organ- isms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associat-			

	Definitions and Abbreviations				
pCi/L	Picocuries Per Liter	A measure of radioactivity.			
PPM	Parts per Million or milligrams per liter (mg/L)	What is a PPM? Compares to 8 hours and 45 seconds out of a millennium (1000 years).			
РРВ	Parts per Billion or micrograms per liter (mg/L)	What is a PPB? Compares to 31 seconds out of a millennium (1000 years).			
SU	Standard Unit	A measure of pH or acidity.			
T.O.N	Threshold Odor Number	Whole numbers that indicate how many dilutions it takes to produce odor-free water.			
TT	Treatment Technique	A required process intended to reduce the level of a contaminant in drinking water.			

Source Water Assessment and Watershed Control Program

AWWSB has developed a Source Water Assessment for Coldwater Spring and for the Hillabee Reservoir. Our assessment has found there is low susceptibility to our source waters from elements likely to cause contamination. The source water assessment was updated in 2021. Additionally, AWWSB has implemented a Watershed Control Program which serves to identify and mitigate potential risks of contamination that would adversely affect the water quality of the spring. Anniston Water Works also owns the Sam H. Hamner Reservoir located 7 miles east of Anniston near the White Plains Community. Currently, no water is removed from Hamner Reservoir for use in the water distribution system.

Lead and Copper

The most recent testing for Lead and Copper Rule compliance was performed within the distribution system in 2020. The testing resulted in a no Action Level exceedance for both lead and copper. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with services lines and home plumbing. AWWSB is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When you water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, lead testing methods, and steps you can take to minimize exposure is available on the EPA website at https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water or by calling the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

Important Information to Know about Water

- All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).
- The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.
- Substances that may be present in source water include: Microbial contaminates, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- The Alabama Department of Environmental Management (ADEM), with the approval of the United States Environmental Protection Agency (EPA), issued a statewide waiver on monitoring for asbestos and dioxin. Accordingly, Anniston Water Works was not required to monitor for these during the reporting period.
- Inorganic contaminates, such as salts and metals, which can be naturally occurring, or as result from urban run-off, industrial or domestic wastewater discharges, oil or gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water run-off, and residential uses.
- Organic chemical contaminates, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production can also come from gas stations, urban storm run-off, and septic tanks.
- Radioactive contaminates, which can be naturally occurring or be the result of oil and gas production and mining activities.
- To ensure high quality drinking water, EPA prescribes regulations which limit the amount of certain contaminates in water provided by public water systems.
- Food and Drug Administration regulations establish limits for contaminates in bottled water, which must provide the same protection for public health.
- Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immunocompromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. Those at risk should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791), or on EPA's website epa.gov/safewater. This information is being provided in addition to other information or notices that may be required by law.

Safe Drinking Water Act

The goal of this water quality report is to provide information regarding the water supplied by the Anniston Water Works and Sewer Board. It is our goal to keep you informed about the drinking water that was delivered to you over the past year. This report will also show that your drinking water continues to meet or exceed standards established by the Environmental Protection Agency (EPA), Alabama Department of Environmental Management (ADEM), and the Safe Drinking Water Act. We also want to take this opportunity to give you a little more background on your water system.

Water Sources

Coldwater Spring Supply

Coldwater Spring, our primary water source, is located 7 miles west of Anniston on Tom Burkhart Drive. Water from the spring is treated at the Paul B. Krebs Water Treatment Plant. Due to the very high quality of the Coldwater Spring supply utilizes filtration is not utilized as a form of treatment. The Coldwater spring supply operates under a filtration waiver from EPA. ADEM and EPA classifies Coldwater Spring as groundwater under the influence of surface water. "Under the influence," refers to run off into the uncovered spring pool which is over one acre in size.

Hillabee Creek Supply

Our secondary source of water is the Hillabee Creek Reservoir located 7 miles southeast of Anniston on Jennifer Lane. The Hillabee Reservoir is classified as a surface water source. Water from the reservoir is treated at the Earl C. Knowlton Water Treatment Plant located just to the north of the reservoir.

Sam H. Hamner Reservoir

Anniston Water Works owns the Sam H. Hamner Reservoir located 7 miles east of Anniston near the White Plains Community. No water is currently removed from Hamner Reservoir for use in the system.

Water Treatment Process

Paul B. Krebs Water Treatment Plant

The Paul B. Krebs Water Treatment plant can treat up to 22 MGD. Due to the very high quality of the Coldwater Spring source water, filtration is not utilized as a form of treatment. The Coldwater Spring supply operates under filtration waiver from EPA. Water is treated with chlorine, a common disinfectant added to kill germs and stop bacteria growth. Fluoride is added to improve dental protection at a concentration of 0.7 mg/L as directed by the ADEM, because it is effective in preventing cavities.

Earl C. Knowlton Water Treatment Plant

The Earl C. Knowlton Water Treatment can treat up to 6 million gallons of drinking water each day. The treatment processes include coagulation, sedimentation, filtration, and chlorine disinfection. Fluoride is added to improve dental protection at a concentration of 0.7 mg/L as directed by the ADEM, because it is effective in preventing cavities.

Board meetings are held on the third Thursday of each month at 11:00 AM at the Main Office located at 1429 Noble Street, Anniston, Alabama.

Questions concerning meetings or requests for additional information should be directed to the General Manager during normal business hours (Monday-Friday, 7:30 AM to 4:30 PM) by calling 256-241-2000 or visit awwsb.org.

Anniston Water Works observes the following holiday schedule:

- New Year's Day
- Martin Luther King Day
- Good Friday
- Memorial Day
- Independence Day
- Labor Day
- Veterans Day
- Thanksgiving
- Friday after Thanksgiving
- Christmas Eve
- Christmas Day

Anniston Water Works and Sewer Board PO Box 2268 Anniston, Al 36202